Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.


Request For Proposals: Pharmacodynamic Biomarker Development

 

Request For Proposals: Pharmacodynamic Biomarker Development

FARA is issuing a request for proposals (RFP) to support clinical drug development programs in Friedreich’s ataxia (FRDA) by promoting the discovery of technologies to measure frataxin or surrogates of frataxin in inaccessible and disease relevant tissues.

This RFP supports the discovery and validation of non-invasive and quantitative methodologies to measure the following in FRDA affected tissues (brain, spinal cord or heart):

  • Frataxin protein levels
  • Biochemical activities dependent on/downstream of frataxin function that can be surrogates of frataxin in inaccessible tissues

Allowed budget will depend on stage and scope of research.

FARA will consider proof of concept and high-risk proposals, without preliminary data, provided they show a strong rationale for the proposed use and development of such biomarkers.

Informal inquiries regarding study relevance and interest to FARA are welcome and should be directed to grants@curefa.org.

Read the Full RFP


Please click below to submit a Letter of Intent.The LOI submission deadline is December 1, 2021.

Submit a Letter of Intent


 

 

In vivo assessment of OXPHOS capacity using 3 T CrCEST MRI in Friedreich's ataxia

The objective of this study was to assess skeletal muscle oxidative metabolism in vivo in adults with FRDA as compared to adults without FRDA using chemical exchange saturation transfer (CrCEST) MRI, which measures free creatine (Cr) over time following an in-magnet plantar flexion exercise. Participants included adults with FRDA (n = 11) and healthy adults (n = 25). All underwent 3-Tesla CrCEST MRI of the calf before and after in-scanner plantar flexion exercise. Participants also underwent whole-body dual-energy X-ray absorptiometry (DXA) scans to measure body composition and completed questionnaires to assess physical activity. In adults with FRDA (vs. healthy adults), prolonged post-exercise exponential decline in CrCEST (τCr) in the lateral gastrocnemius (LG, 274 s vs. 138 s, p = 0.01) was observed, likely reflecting decreased OXPHOS capacity. Adults with FRDA (vs. healthy adults) also engaged different muscle groups during exercise, as indicated by muscle group-specific changes in creatine with exercise (∆CrCEST), possibly reflecting decreased coordination. Across all participants, increased adiposity and decreased usual physical activity were associated with smaller ∆CrCEST. In FRDA, CrCEST MRI may be a useful biomarker of muscle-group-specific decline in OXPHOS capacity that can be leveraged to track within-participant changes over time. Appropriate participant selection and further optimization of the exercise stimulus will enhance the utility of this technique.

Read the Full article here
 

Neuroinflammation in the Cerebellum and Brainstem in Friedreich Ataxia: An [18 F]-FEMPA PET Study

Neuroinflammation is proposed to accompany, or even contribute to, neuropathology in Friedreich ataxia (FRDA), with implications for disease treatment and tracking. The purpose of this study was to examine brain glial activation and systemic immune dysfunction in people with FRDA and quantify their relationship with symptom severity, duration, and onset age. Fifteen individuals with FRDA and 13 healthy controls underwent brain positron emission tomography using the translocator protein (TSPO) radioligand [18 F]-FEMPA, a marker of glial activation, together with the quantification of blood plasma inflammatory cytokines. [18 F]-FEMPA binding was significantly increased in the dentate nuclei (d = 0.67), superior cerebellar peduncles (d = 0.74), and midbrain (d = 0.87), alongside increased plasma interleukin-6 (IL-6) (d = 0.73), in individuals with FRDA compared to controls. Increased [18 F]-FEMPA binding in the dentate nuclei, brainstem, and cerebellar anterior lobe correlated with earlier age of symptom onset (controlling for the genetic triplet repeat expansion length; all rpart < -0.6), and in the pons and anterior lobe with shorter disease duration (r = -0.66; -0.73). Neuroinflammation is evident in brain regions implicated in FRDA neuropathology. Increased neuroimmune activity may be related to earlier disease onset and attenuate over the course of the illness.

Read the Full article here
 

Friedreich's ataxia-associated childhood hypertrophic cardiomyopathy: a national cohort study

Hypertrophic cardiomyopathy (HCM) is an important predictor of long-term outcomes in Friedreich's ataxia (FA), but the clinical spectrum and survival in childhood is poorly described. This study aimed to describe the clinical characteristics of children with FA-HCM. This is a retrospective, longitudinal cohort study of 78 children (<18 years) with FA-HCM diagnosed over four decades, from the UK. Anonymized retrospective demographic and clinical data were collected from baseline evaluation and follow-up. The primary study end-point was all-cause mortality (sudden cardiac death, atrial arrhythmia-related death, heart failure-related death, non-cardiac death) or cardiac transplantation. The mean age at diagnosis of FA-HCM was 10.9 (±3.1) years. Diagnosis was within 1 year of cardiac referral in 34 (65.0%) patients, but preceded the diagnosis of FA in 4 (5.3%). At baseline, 65 (90.3%) had concentric left ventricular hypertrophy and 6 (12.5%) had systolic impairment. Over a median follow-up of 5.1 years (IQR 2.4-7.3), 8 (10.5%) had documented supraventricular arrhythmias and 8 (10.5%) died (atrial arrhythmia-related n=2; heart failure-related n=1; non-cardiac n=2; or unknown cause n=3), but there were no sudden cardiac deaths. Freedom from death or transplantation at 10 years was 80.8% (95% CI 62.5 to 90.8). This is the largest cohort of childhood FA-HCM reported to date and describes a high prevalence of atrial arrhythmias and impaired systolic function in childhood, suggesting early progression to end-stage disease. Overall mortality is similar to that reported in non-syndromic childhood HCM, but no patients died suddenly.

Read the Full article here
 

NeuroVoices: David R. Lynch, MD, PhD, on the First Potentially Approved Friedreich Ataxia Treatment

The professor of neurology at the University of Pennsylvania Perelman School of Medicine discussed the state of care for Friedrich ataxia and omaveloxolone’s potential to become its first approved therapy.

David R. Lynch, MD, PhD, professor of neurology, University of Pennsylvania Perelman School of Medicine David R. Lynch, MD, PhD

Friedreich ataxia, a rare, inherited, degenerative disease that damages the spinal cord, peripheral nerves, and cerebellum portion of the brain, currently has no FDA-approved therapies available to treat it.1 Although, a therapy with the potential to fill this gap in care has emerged from the pipeline in recent months.

Omaveloxolone (Reata Pharmaceuticals), has shown potential for this patient population after an analysis from the phase 2 MOXIe trial (NCT02255435) revealed a significant difference in modified Friedrich’s Ataxia Rating Scale (mFARS) of –2.18 points (±0.96) between treatment with omaveloxolone and placebo groups.2 Lead author David R. Lynch, MD, PhD, professor of neurology, University of Pennsylvania Perelman School of Medicine, told NeurologyLive that he believes there is good reason to hold out hope in this drug.

Lynch connected with NeurologyLive for a new iteration of NeuroVoices to discuss the findings from the MOXIe trial, why the mechanistic action of omaveloxolone makes it so effective to treat these patients, and whether it has legitimate potential to break through the treatment landscape.

Read the Full article here
 

Page 1 of 222

SHARE

FacebookTwitterLinkedInYoutube

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Site Map     Privacy Policy      Service Terms      Contact      Charity Navigator