Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

 

FARA Funded Research

Your generous support has funded all the research listed below.


For more information on FARA-funded research & scientists, please visit FARA Supported Research, Active Clinical Trials and the Featured Scientist.

Premature transcription termination at the expanded GAA repeats and aberrant alternative polyadenylation contributes to the Frataxin transcriptional deficit in Friedreich's ataxia

Frataxin deficiency in Friedreich's ataxia results from transcriptional downregulation of the FXN gene caused by expansion of the intronic trinucleotide GAA repeats. The authors used multiple transcriptomic approaches to determine the molecular mechanism of transcription inhibition caused by long GAAs. Transcription of FXN in patient cells is prematurely terminated upstream of the expanded repeats leading to formation of a novel, truncated and stable RNA. This FXN early terminated transcript, (FXN-ett) undergoes alternative, non-productive splicing and does not contribute to the synthesis of functional frataxin. The level the FXN-ett RNA directly correlates with the length of the longer of the two expanded GAA tracts. Targeting GAAs with antisense oligonucleotides or excision of the repeats eliminates the transcription impediment, diminishes expression of the aberrant FXN-ett, while increasing levels of FXN mRNA and frataxin. Non-productive transcription may represent a common phenomenon and attractive therapeutic target in diseases caused by repeat-mediated transcription aberrations.

Read the Full article here
 

Advantages and Limitations of Gene Therapy and Gene Editing for Friedreich's Ataxia

In this review, the authors provide an overview on the current and emerging prospects of gene therapy for FRDA, with specific focus on advantages of CRISPR/Cas9-mediated gene editing of FXN as a viable option to restore endogenous frataxin expression. They also assess the potential of ex vivo gene editing in hematopoietic stem and progenitor cells as a potential autologous transplantation therapeutic option and discuss its advantages in tackling FRDA-specific safety aspects for clinical translation.

Read the Full article here
 

A Drug Combination Rescues Frataxin-Dependent Neural and Cardiac Pathophysiology in FA Models

To date, FA therapeutic strategies have focused along two main lines using a single-drug approach: a) increasing frataxin and b) enhancing downstream pathways, including antioxidant levels and mitochondrial function. This paper presents novel strategy that employs a combinatorial approach to screen approved compounds to determine if a combination of molecules provides an additive or synergistic benefit to FA cells and/or animal models. Eight single drug molecules were administered to FA fibroblast patient cells: nicotinamide riboside, hemin, betamethasone, resveratrol, epicatechin, histone deacetylase inhibitor 109, methylene blue, and dimethyl fumarate. Their individual ability to induce FXN transcription and mitochondrial biogenesis in patient cells was measured. Single-drug testing highlighted that dimethyl fumarate and resveratrol increased these two parameters. In addition, the simultaneous administration of these two drugs was the most effective in terms of FXN mRNA and mitobiogenesis increase. Interestingly, this combination also improved mitochondrial functions and reduced reactive oxygen species in neurons and cardiomyocytes. Behavioral tests in an FA mouse model treated with dimethyl fumarate and resveratrol demonstrated improved rotarod performance. These data suggest that dimethyl fumarate is effective as a single agent, and the addition of resveratrol provides further benefit in some assays without showing toxicity. Therefore, they could be a valuable combination to counteract FA pathophysiology. Further studies will help fully understand the potential of a combined therapeutic strategy in FA pathophysiology.

Read the Full article here
 

Simultaneous Quantification of Mitochondrial Mature Frataxin and Extra-Mitochondrial Frataxin Isoform E in Friedreich's Ataxia Blood

Full-length frataxin has a mitochondrial targeting sequence, which facilitates its translocation into mitochondria where it is processed through cleavage at G41-L42 and K80-S81 by mitochondrial processing (MPP) to release mitochondrial mature frataxin (81-210). Alternative splicing of FXN also leads to expression of N-terminally acetylated extra-mitochondrial frataxin (76-210) named isoform E because it was discovered in erythrocytes. The discovery that isoform E is only present in erythrocytes, whereas, mature frataxin is present primarily in short-lived peripheral blood mononuclear cells (PBMCs), granulocytes, and platelets, meant that both proteins could be quantified in whole blood samples. This study reports a quantitative assay for frataxin proteoforms in whole blood from healthy controls and FRDA patients. The assay is based on stable isotope dilution coupled with immunoprecipitation (IP) and two-dimensional-nano-ultrahigh performance liquid chromatography/parallel reaction monitoring/high resolution mass spectrometry (2D-nano-UHPLC-PRM/HRMS). The lower limit of quantification was 0.5 ng/mL for each proteoform and the assays had 100% sensitivity and specificity for discriminating between healthy controls (n = 11) and FRDA cases (N = 100 in year-1, N = 22 in year-2,3). The mean levels of mature frataxin in whole blood from healthy controls and homozygous FRDA patients were significantly different (p < 0.0001) at 7.5 ± 1.5 ng/mL and 2.1 ± 1.2 ng/mL, respectively. The mean levels of isoform E in whole blood from healthy controls and homozygous FRDA patients were significantly different (p < 0.0001) at 26.8 ± 4.1 ng/mL and 4.7 ± 3.3 ng/mL, respectively. The mean levels of total frataxin in whole blood from healthy controls and homozygous FRDA patients were significantly different (p < 0.0001) at 34.2 ± 4.3 ng/mL and 6.8 ± 4.0 ng/mL, respectively. The assay will make it possible to rigorously monitor the natural history of the disease and explore the potential role of isoform E in etiology of the disease. It will also facilitate the assessment of therapeutic interventions (including gene therapy approaches) that attempt to increase frataxin protein expression as a treatment for this devastating disease.

Read the Full article here
 

Frataxin deficiency lowers lean mass and triggers the integrated stress response in skeletal muscle

Neurological and cardiac comorbidities are prominent in FRDA and have been a major focus of study. Skeletal muscle has received less attention despite indications that FXN loss affects it. Here, the authors show that lean mass is lower, whereas body mass index is unaltered, in separate cohorts of adults and children with FRDA. In adults, lower lean mass correlated with disease severity. To further investigate FXN loss in skeletal muscle, a transgenic mouse model of whole-body inducible and progressive FXN depletion was used. There was little impact of FXN loss when FXN was approximately 20% of control levels. When residual FXN was approximately 5% of control levels, muscle mass was lower along with absolute grip strength. When we examined mechanisms that can affect muscle mass, only global protein translation was lower, accompanied by integrated stress response (ISR) activation. Also in mice, aerobic exercise training, initiated prior to the muscle mass difference, improved running capacity, yet, muscle mass and the ISR remained as in untrained mice. Thus, FXN loss can lead to lower lean mass, with ISR activation, both of which are insensitive to exercise training.

Read the Full article here
 

Page 1 of 45

SHARE

FacebookTwitterLinkedInYoutube

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Privacy Policy      Service Terms      Contact      Charity Navigator