Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

 

FARA Funded Research

Your generous support has funded all the research listed below.


For more information on FARA-funded research & scientists, please visit FARA Supported Research, Active Clinical Trials and the Featured Scientist.

Epigenetic Heterogeneity in Friedreich Ataxia Underlies Variable FXN Reactivation

The expanded GAA repeat in FRDA induces repressive histone changes and DNA hypermethylation, which result in epigenetic silencing and FXN transcriptional deficiency. A class I histone deacetylase inhibitor (HDACi-109) reactivates the silenced FXN gene, although with considerable inter-individual variability, which remains etiologically unexplained. Because HDAC inhibitors work by reversing epigenetic silencing, the authors reasoned that epigenetic heterogeneity among patients may help to explain this inter-individual variability. As a surrogate measure for epigenetic heterogeneity, a highly quantitative measurement of DNA hypermethylation via bisulfite deep sequencing, with single molecule resolution, was used to assess the prevalence of unmethylated, partially methylated, and fully methylated somatic FXN molecules in PBMCs from a prospective cohort of 50 FRDA patients. Treatment of the same PBMCs from this cohort with HDACi-109 significantly increased FXN transcript to levels seen in asymptomatic heterozygous carriers, albeit with the expected inter-individual variability. Response to HDACi-109 correlated significantly with the prevalence of unmethylated and partially methylated FXN molecules, supporting the model that FXN reactivation involves a proportion of genes that are amenable to correction in non-dividing somatic cells, and that heavily methylated FXN molecules are relatively resistant to reactivation. FXN reactivation is a promising therapeutic strategy in FRDA, and inter-individual variability is explained, at least in part, by somatic epigenetic heterogeneity.

Read the Full article here
 

The Responsiveness of Gait and Balance Outcomes to Disease Progression in Friedreich Ataxia

To identify gait and balance measures that are responsive to change during the timeline of a clinical trial in Friedreich ataxia (FRDA), the authors administered a battery of potential measures three times over a 12-month period. Sixty-one ambulant individuals with FRDA underwent assessment of gait and balance at baseline, 6 months and 12 months. Outcomes included GAITRite® spatiotemporal gait parameters; Biodex Balance System Postural Stability Test (PST) and Limits of Stability; Berg Balance Scale (BBS); Timed 25-Foot Walk Test; Dynamic Gait Index (DGI); SenseWear MF Armband step and energy activity; and the Friedreich Ataxia Rating Scale Upright Stability Subscale (FARS USS). The standardised response mean (SRM) or correlation coefficients were reported as effect size indices for comparison of internal responsiveness. Internal responsiveness was also analysed in subgroups. SenseWear Armband daily step count had the largest effect size of all the variables over 6 months (SRM = -0.615), while the PST medial-lateral index had the largest effect size (SRM = 0.829) over 12 months. The FARS USS (SRM = 0.824) and BBS (SRM = -0.720) were the only outcomes able to detect change over 12 months in all subgroups. The DGI was the most responsive outcome in children, detecting a mean change of -2.59 (95% CI -3.52 to -1.66, p < 0.001, SRM = -1.429). In conclusion, the FARS USS and BBS are highly responsive and can detect change in a wide range of ambulant individuals with FRDA. However, therapeutic effects in children may be best measured by the DGI.

Read the Full article here
 

Conformational stability, dynamics and function of human frataxin: Tryptophan side chain interplay

This work analyzes three frataxin variants in which one tryptophan was replaced by a glycine: W155G, W168G and W173G. As expected, given its localization in the assembly site, W155G was not able to activate the desulfurase activity of the supercomplex for iron-sulfur cluster assembly. In turn, W168G, which was significantly more unstable than W155G, was fully active. W173G, which was highly unstable as W168G, showed a significantly decreased activity, only slightly higher than W155G. As W168G and W173G were highly sensitive to proteolysis, the authors investigated the protein motions by molecular dynamic simulations. They observed that W173G may display altered motions at the Trp155 site. Furthermore, the analysis revealed a H-bond network in which Trp155 takes part, involving residues Gln148, Asn151, Gln153 and Arg165. The authors suggest that this motion modulation that specifically alters the population of different Trp155 rotamers can be directly transferred to the assembly site, altering the dynamics of the ISCU His137 key residue. This hypothesis was also contrasted by means of molecular dynamic simulations of frataxin in the context of the complete supercomplex. The authors propose that the supercomplex requires very definite motions of Trp155 to consolidate the assembly site.

Read the Full article here
 

Cellular pathophysiology of Friedreich's ataxia cardiomyopathy

FRDA cardiomyopathy is a complex and progressive disease with no cure or treatment to slow its progression. At the cellular level, cardiomyocyte hypertrophy, apoptosis and fibrosis contribute to the cardiac pathology. However, the heart is composed of multiple cell types and several clinical studies have reported the involvement of cardiac non-myocytes such as vascular cells, autonomic neurons, and inflammatory cells in the pathogenesis of FRDA cardiomyopathy. In fact, several of the cardiac pathologies associated with FRDA including cardiomyocyte necrosis, fibrosis, and arrhythmia, could be contributed to by a diseased vasculature and autonomic dysfunction. Here, the authors review available evidence regarding the current understanding of cellular mechanisms and the involvement of cardiac non-myocytes in the pathogenesis of FRDA cardiomyopathy.

Read the Full article here
 

Body Mass Index and Height in the Friedreich Ataxia Clinical Outcome Measures Study

Body mass index (BMI) and height are important indices of health. This study tested the association between these outcomes and clinical characteristics in Friedreich ataxia (FRDA), a progressive neuromuscular disorder. Participants (N = 961) were enrolled in a prospective natural history study (Friedreich Ataxia Clinical Outcome Measure Study). Age- and sex-specific BMI and height Z-scores were calculated using CDC 2000 references for participants younger than 18 years. For adults aged 18 years or older, height Z-scores were also calculated, and absolute BMI was reported. Univariate and multivariate linear regression analyses tested the associations between exposures, covariates, and BMI or height measured at the baseline visit. In children, the superimposition by translation and rotation analysis method was used to compare linear growth trajectories between FRDA and a healthy reference cohort, the Bone Mineral Density in Childhood Study (n = 1,535 used for analysis). Median age at the baseline was 20 years (IQR, 13-33 years); 49% (n = 475) were women. A substantial proportion of children (17%) were underweight (BMI-Z < fifth percentile), and female sex was associated with lower BMI-Z (β = -0.34, p < 0.05). In adults, older age was associated with higher BMI (β = 0.09, p < 0.05). Regarding height, in children, older age (β -0.06, p < 0.05) and worse modified Friedreich Ataxia Rating Scale (mFARS) scores (β = -1.05 for fourth quartile vs first quartile, p < 0.01) were associated with shorter stature. In girls, the magnitude of the pubertal growth spurt was less, and in boys, the pubertal growth spurt occurred later (p < 0.001 for both) than in a healthy reference cohort. In adults, in unadjusted analyses, both earlier age of FRDA symptom onset (=0.09, p < 0.05) and longer guanine-adenine-adenine repeat length (shorter of the 2 GAA repeats, β = -0.12, p < 0.01) were associated with shorter stature. Both adults and children with higher mFARS scores and/or who were nonambulatory were less likely to have height and weight measurements recorded at clinical visits. FRDA affects both weight gain and linear growth. These insights will inform assessments of affected individuals in both research and clinical settings.

Read the Full article here
 

Page 4 of 46

SHARE

FacebookTwitterLinkedInYoutube

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Privacy Policy      Service Terms      Contact      Charity Navigator